home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Software of the Month Club 2000 October
/
Software of the Month - Ultimate Collection Shareware 277.iso
/
pc
/
PROGRAMS
/
UTILITY
/
WINLINUX
/
DATA1.CAB
/
programs_-_kernel_source
/
MM
/
MMAP.C
< prev
next >
Wrap
C/C++ Source or Header
|
1999-09-17
|
24KB
|
877 lines
/*
* linux/mm/mmap.c
*
* Written by obz.
*/
#include <linux/slab.h>
#include <linux/shm.h>
#include <linux/mman.h>
#include <linux/pagemap.h>
#include <linux/swap.h>
#include <linux/swapctl.h>
#include <linux/smp_lock.h>
#include <linux/init.h>
#include <linux/file.h>
#include <asm/uaccess.h>
#include <asm/pgtable.h>
/* description of effects of mapping type and prot in current implementation.
* this is due to the limited x86 page protection hardware. The expected
* behavior is in parens:
*
* map_type prot
* PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
* MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
* w: (no) no w: (no) no w: (yes) yes w: (no) no
* x: (no) no x: (no) yes x: (no) yes x: (yes) yes
*
* MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
* w: (no) no w: (no) no w: (copy) copy w: (no) no
* x: (no) no x: (no) yes x: (no) yes x: (yes) yes
*
*/
pgprot_t protection_map[16] = {
__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
};
/* SLAB cache for vm_area_struct's. */
kmem_cache_t *vm_area_cachep;
int sysctl_overcommit_memory;
/* Check that a process has enough memory to allocate a
* new virtual mapping.
*/
int vm_enough_memory(long pages)
{
/* Stupid algorithm to decide if we have enough memory: while
* simple, it hopefully works in most obvious cases.. Easy to
* fool it, but this should catch most mistakes.
*/
/* 23/11/98 NJC: Somewhat less stupid version of algorithm,
* which tries to do "TheRightThing". Instead of using half of
* (buffers+cache), use the minimum values. Allow an extra 2%
* of num_physpages for safety margin.
*/
long free;
/* Sometimes we want to use more memory than we have. */
if (sysctl_overcommit_memory)
return 1;
free = buffermem >> PAGE_SHIFT;
free += page_cache_size;
free += nr_free_pages;
free += nr_swap_pages;
free -= (page_cache.min_percent + buffer_mem.min_percent + 2)*num_physpages/100;
return free > pages;
}
/* Remove one vm structure from the inode's i_mmap ring. */
static inline void remove_shared_vm_struct(struct vm_area_struct *vma)
{
struct file * file = vma->vm_file;
if (file) {
if (vma->vm_flags & VM_DENYWRITE)
file->f_dentry->d_inode->i_writecount++;
if(vma->vm_next_share)
vma->vm_next_share->vm_pprev_share = vma->vm_pprev_share;
*vma->vm_pprev_share = vma->vm_next_share;
}
}
asmlinkage unsigned long sys_brk(unsigned long brk)
{
unsigned long rlim, retval;
unsigned long newbrk, oldbrk;
struct mm_struct *mm = current->mm;
down(&mm->mmap_sem);
/*
* This lock-kernel is one of the main contention points for
* certain normal loads. And it really should not be here: almost
* everything in brk()/mmap()/munmap() is protected sufficiently by
* the mmap semaphore that we got above.
*
* We should move this into the few things that really want the
* lock, namely anything that actually touches a file descriptor
* etc. We can do all the normal anonymous mapping cases without
* ever getting the lock at all - the actual memory management
* code is already completely thread-safe.
*/
lock_kernel();
if (brk < mm->end_code)
goto out;
newbrk = PAGE_ALIGN(brk);
oldbrk = PAGE_ALIGN(mm->brk);
if (oldbrk == newbrk)
goto set_brk;
/* Always allow shrinking brk. */
if (brk <= mm->brk) {
if (!do_munmap(newbrk, oldbrk-newbrk))
goto set_brk;
goto out;
}
/* Check against rlimit and stack.. */
rlim = current->rlim[RLIMIT_DATA].rlim_cur;
if (rlim < RLIM_INFINITY && brk - mm->end_code > rlim)
goto out;
/* Check against existing mmap mappings. */
if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
goto out;
/* Check if we have enough memory.. */
if (!vm_enough_memory((newbrk-oldbrk) >> PAGE_SHIFT))
goto out;
/* Ok, looks good - let it rip. */
if (do_mmap(NULL, oldbrk, newbrk-oldbrk,
PROT_READ|PROT_WRITE|PROT_EXEC,
MAP_FIXED|MAP_PRIVATE, 0) != oldbrk)
goto out;
set_brk:
mm->brk = brk;
out:
retval = mm->brk;
unlock_kernel();
up(&mm->mmap_sem);
return retval;
}
/* Combine the mmap "prot" and "flags" argument into one "vm_flags" used
* internally. Essentially, translate the "PROT_xxx" and "MAP_xxx" bits
* into "VM_xxx".
*/
static inline unsigned long vm_flags(unsigned long prot, unsigned long flags)
{
#define _trans(x,bit1,bit2) \
((bit1==bit2)?(x&bit1):(x&bit1)?bit2:0)
unsigned long prot_bits, flag_bits;
prot_bits =
_trans(prot, PROT_READ, VM_READ) |
_trans(prot, PROT_WRITE, VM_WRITE) |
_trans(prot, PROT_EXEC, VM_EXEC);
flag_bits =
_trans(flags, MAP_GROWSDOWN, VM_GROWSDOWN) |
_trans(flags, MAP_DENYWRITE, VM_DENYWRITE) |
_trans(flags, MAP_EXECUTABLE, VM_EXECUTABLE);
return prot_bits | flag_bits;
#undef _trans
}
unsigned long do_mmap(struct file * file, unsigned long addr, unsigned long len,
unsigned long prot, unsigned long flags, unsigned long off)
{
struct mm_struct * mm = current->mm;
struct vm_area_struct * vma;
int error;
if ((len = PAGE_ALIGN(len)) == 0)
return addr;
if (len > TASK_SIZE || addr > TASK_SIZE-len)
return -EINVAL;
/* offset overflow? */
if (off + len < off)
return -EINVAL;
/* Too many mappings? */
if (mm->map_count > MAX_MAP_COUNT)
return -ENOMEM;
/* mlock MCL_FUTURE? */
if (mm->def_flags & VM_LOCKED) {
unsigned long locked = mm->locked_vm << PAGE_SHIFT;
locked += len;
if (locked > current->rlim[RLIMIT_MEMLOCK].rlim_cur)
return -EAGAIN;
}
/* Do simple checking here so the lower-level routines won't have
* to. we assume access permissions have been handled by the open
* of the memory object, so we don't do any here.
*/
if (file != NULL) {
switch (flags & MAP_TYPE) {
case MAP_SHARED:
if ((prot & PROT_WRITE) && !(file->f_mode & 2))
return -EACCES;
/* Make sure we don't allow writing to an append-only file.. */
if (IS_APPEND(file->f_dentry->d_inode) && (file->f_mode & 2))
return -EACCES;
/* make sure there are no mandatory locks on the file. */
if (locks_verify_locked(file->f_dentry->d_inode))
return -EAGAIN;
/* fall through */
case MAP_PRIVATE:
if (!(file->f_mode & 1))
return -EACCES;
break;
default:
return -EINVAL;
}
} else if ((flags & MAP_TYPE) != MAP_PRIVATE)
return -EINVAL;
/* Obtain the address to map to. we verify (or select) it and ensure
* that it represents a valid section of the address space.
*/
if (flags & MAP_FIXED) {
if (addr & ~PAGE_MASK)
return -EINVAL;
} else {
addr = get_unmapped_area(addr, len);
if (!addr)
return -ENOMEM;
}
/* Determine the object being mapped and call the appropriate
* specific mapper. the address has already been validated, but
* not unmapped, but the maps are removed from the list.
*/
if (file && (!file->f_op || !file->f_op->mmap))
return -ENODEV;
vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
if (!vma)
return -ENOMEM;
vma->vm_mm = mm;
vma->vm_start = addr;
vma->vm_end = addr + len;
vma->vm_flags = vm_flags(prot,flags) | mm->def_flags;
if (file) {
if (file->f_mode & 1)
vma->vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
if (flags & MAP_SHARED) {
vma->vm_flags |= VM_SHARED | VM_MAYSHARE;
/* This looks strange, but when we don't have the file open
* for writing, we can demote the shared mapping to a simpler
* private mapping. That also takes care of a security hole
* with ptrace() writing to a shared mapping without write
* permissions.
*
* We leave the VM_MAYSHARE bit on, just to get correct output
* from /proc/xxx/maps..
*/
if (!(file->f_mode & 2))
vma->vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
}
} else
vma->vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
vma->vm_page_prot = protection_map[vma->vm_flags & 0x0f];
vma->vm_ops = NULL;
vma->vm_offset = off;
vma->vm_file = NULL;
vma->vm_pte = 0;
/* Clear old maps */
error = -ENOMEM;
if (do_munmap(addr, len))
goto free_vma;
/* Check against address space limit. */
if ((mm->total_vm << PAGE_SHIFT) + len
> current->rlim[RLIMIT_AS].rlim_cur)
goto free_vma;
/* Private writable mapping? Check memory availability.. */
if ((vma->vm_flags & (VM_SHARED | VM_WRITE)) == VM_WRITE &&
!(flags & MAP_NORESERVE) &&
!vm_enough_memory(len >> PAGE_SHIFT))
goto free_vma;
if (file) {
int correct_wcount = 0;
if (vma->vm_flags & VM_DENYWRITE) {
if (file->f_dentry->d_inode->i_writecount > 0) {
error = -ETXTBSY;
goto free_vma;
}
/* f_op->mmap might possibly sleep
* (generic_file_mmap doesn't, but other code
* might). In any case, this takes care of any
* race that this might cause.
*/
file->f_dentry->d_inode->i_writecount--;
correct_wcount = 1;
}
error = file->f_op->mmap(file, vma);
/* Fix up the count if necessary, then check for an error */
if (correct_wcount)
file->f_dentry->d_inode->i_writecount++;
if (error)
goto unmap_and_free_vma;
vma->vm_file = file;
file->f_count++;
}
/*
* merge_segments may merge our vma, so we can't refer to it
* after the call. Save the values we need now ...
*/
flags = vma->vm_flags;
addr = vma->vm_start; /* can addr have changed?? */
insert_vm_struct(mm, vma);
merge_segments(mm, vma->vm_start, vma->vm_end);
mm->total_vm += len >> PAGE_SHIFT;
if (flags & VM_LOCKED) {
mm->locked_vm += len >> PAGE_SHIFT;
make_pages_present(addr, addr + len);
}
return addr;
unmap_and_free_vma:
/* Undo any partial mapping done by a device driver. */
flush_cache_range(mm, vma->vm_start, vma->vm_end);
zap_page_range(mm, vma->vm_start, vma->vm_end - vma->vm_start);
flush_tlb_range(mm, vma->vm_start, vma->vm_end);
free_vma:
kmem_cache_free(vm_area_cachep, vma);
return error;
}
/* Get an address range which is currently unmapped.
* For mmap() without MAP_FIXED and shmat() with addr=0.
* Return value 0 means ENOMEM.
*/
unsigned long get_unmapped_area(unsigned long addr, unsigned long len)
{
struct vm_area_struct * vmm;
if (len > TASK_SIZE)
return 0;
if (!addr)
addr = TASK_UNMAPPED_BASE;
addr = PAGE_ALIGN(addr);
for (vmm = find_vma(current->mm, addr); ; vmm = vmm->vm_next) {
/* At this point: (!vmm || addr < vmm->vm_end). */
if (TASK_SIZE - len < addr)
return 0;
if (!vmm || addr + len <= vmm->vm_start)
return addr;
addr = vmm->vm_end;
}
}
#define vm_avl_empty (struct vm_area_struct *) NULL
#include "mmap_avl.c"
/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr)
{
struct vm_area_struct *vma = NULL;
if (mm) {
/* Check the cache first. */
/* (Cache hit rate is typically around 35%.) */
vma = mm->mmap_cache;
if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
if (!mm->mmap_avl) {
/* Go through the linear list. */
vma = mm->mmap;
while (vma && vma->vm_end <= addr)
vma = vma->vm_next;
} else {
/* Then go through the AVL tree quickly. */
struct vm_area_struct * tree = mm->mmap_avl;
vma = NULL;
for (;;) {
if (tree == vm_avl_empty)
break;
if (tree->vm_end > addr) {
vma = tree;
if (tree->vm_start <= addr)
break;
tree = tree->vm_avl_left;
} else
tree = tree->vm_avl_right;
}
}
if (vma)
mm->mmap_cache = vma;
}
}
return vma;
}
/* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
struct vm_area_struct **pprev)
{
if (mm) {
if (!mm->mmap_avl) {
/* Go through the linear list. */
struct vm_area_struct * prev = NULL;
struct vm_area_struct * vma = mm->mmap;
while (vma && vma->vm_end <= addr) {
prev = vma;
vma = vma->vm_next;
}
*pprev = prev;
return vma;
} else {
/* Go through the AVL tree quickly. */
struct vm_area_struct * vma = NULL;
struct vm_area_struct * last_turn_right = NULL;
struct vm_area_struct * prev = NULL;
struct vm_area_struct * tree = mm->mmap_avl;
for (;;) {
if (tree == vm_avl_empty)
break;
if (tree->vm_end > addr) {
vma = tree;
prev = last_turn_right;
if (tree->vm_start <= addr)
break;
tree = tree->vm_avl_left;
} else {
last_turn_right = tree;
tree = tree->vm_avl_right;
}
}
if (vma) {
if (vma->vm_avl_left != vm_avl_empty) {
prev = vma->vm_avl_left;
while (prev->vm_avl_right != vm_avl_empty)
prev = prev->vm_avl_right;
}
if ((prev ? prev->vm_next : mm->mmap) != vma)
printk("find_vma_prev: tree inconsistent with list\n");
*pprev = prev;
return vma;
}
}
}
*pprev = NULL;
return NULL;
}
/* Normal function to fix up a mapping
* This function is the default for when an area has no specific
* function. This may be used as part of a more specific routine.
* This function works out what part of an area is affected and
* adjusts the mapping information. Since the actual page
* manipulation is done in do_mmap(), none need be done here,
* though it would probably be more appropriate.
*
* By the time this function is called, the area struct has been
* removed from the process mapping list, so it needs to be
* reinserted if necessary.
*
* The 4 main cases are:
* Unmapping the whole area
* Unmapping from the start of the segment to a point in it
* Unmapping from an intermediate point to the end
* Unmapping between to intermediate points, making a hole.
*
* Case 4 involves the creation of 2 new areas, for each side of
* the hole. If possible, we reuse the existing area rather than
* allocate a new one, and the return indicates whether the old
* area was reused.
*/
static struct vm_area_struct * unmap_fixup(struct vm_area_struct *area,
unsigned long addr, size_t len, struct vm_area_struct *extra)
{
struct vm_area_struct *mpnt;
unsigned long end = addr + len;
area->vm_mm->total_vm -= len >> PAGE_SHIFT;
if (area->vm_flags & VM_LOCKED)
area->vm_mm->locked_vm -= len >> PAGE_SHIFT;
/* Unmapping the whole area. */
if (addr == area->vm_start && end == area->vm_end) {
if (area->vm_ops && area->vm_ops->close)
area->vm_ops->close(area);
if (area->vm_file)
fput(area->vm_file);
kmem_cache_free(vm_area_cachep, area);
return extra;
}
/* Work out to one of the ends. */
if (end == area->vm_end)
area->vm_end = addr;
else if (addr == area->vm_start) {
area->vm_offset += (end - area->vm_start);
area->vm_start = end;
} else {
/* Unmapping a hole: area->vm_start < addr <= end < area->vm_end */
/* Add end mapping -- leave beginning for below */
mpnt = extra;
extra = NULL;
mpnt->vm_mm = area->vm_mm;
mpnt->vm_start = end;
mpnt->vm_end = area->vm_end;
mpnt->vm_page_prot = area->vm_page_prot;
mpnt->vm_flags = area->vm_flags;
mpnt->vm_ops = area->vm_ops;
mpnt->vm_offset = area->vm_offset + (end - area->vm_start);
mpnt->vm_file = area->vm_file;
mpnt->vm_pte = area->vm_pte;
if (mpnt->vm_file)
mpnt->vm_file->f_count++;
if (mpnt->vm_ops && mpnt->vm_ops->open)
mpnt->vm_ops->open(mpnt);
area->vm_end = addr; /* Truncate area */
insert_vm_struct(current->mm, mpnt);
}
insert_vm_struct(current->mm, area);
return extra;
}
/*
* Try to free as many page directory entries as we can,
* without having to work very hard at actually scanning
* the page tables themselves.
*
* Right now we try to free page tables if we have a nice
* PGDIR-aligned area that got free'd up. We could be more
* granular if we want to, but this is fast and simple,
* and covers the bad cases.
*
* "prev", if it exists, points to a vma before the one
* we just free'd - but there's no telling how much before.
*/
static void free_pgtables(struct mm_struct * mm, struct vm_area_struct *prev,
unsigned long start, unsigned long end)
{
unsigned long first = start & PGDIR_MASK;
unsigned long last = (end + PGDIR_SIZE - 1) & PGDIR_MASK;
if (!prev) {
prev = mm->mmap;
if (!prev)
goto no_mmaps;
if (prev->vm_end > start) {
if (last > prev->vm_start)
last = prev->vm_start;
goto no_mmaps;
}
}
for (;;) {
struct vm_area_struct *next = prev->vm_next;
if (next) {
if (next->vm_start < start) {
prev = next;
continue;
}
if (last > next->vm_start)
last = next->vm_start;
}
if (prev->vm_end > first)
first = prev->vm_end + PGDIR_SIZE - 1;
break;
}
no_mmaps:
first = first >> PGDIR_SHIFT;
last = last >> PGDIR_SHIFT;
if (last > first)
clear_page_tables(mm, first, last-first);
}
/* Munmap is split into 2 main parts -- this part which finds
* what needs doing, and the areas themselves, which do the
* work. This now handles partial unmappings.
* Jeremy Fitzhardine <jeremy@sw.oz.au>
*/
int do_munmap(unsigned long addr, size_t len)
{
struct mm_struct * mm;
struct vm_area_struct *mpnt, *prev, **npp, *free, *extra;
if ((addr & ~PAGE_MASK) || addr > TASK_SIZE || len > TASK_SIZE-addr)
return -EINVAL;
if ((len = PAGE_ALIGN(len)) == 0)
return -EINVAL;
/* Check if this memory area is ok - put it on the temporary
* list if so.. The checks here are pretty simple --
* every area affected in some way (by any overlap) is put
* on the list. If nothing is put on, nothing is affected.
*/
mm = current->mm;
mpnt = find_vma_prev(mm, addr, &prev);
if (!mpnt)
return 0;
/* we have addr < mpnt->vm_end */
if (mpnt->vm_start >= addr+len)
return 0;
/* If we'll make "hole", check the vm areas limit */
if ((mpnt->vm_start < addr && mpnt->vm_end > addr+len)
&& mm->map_count >= MAX_MAP_COUNT)
return -ENOMEM;
/*
* We may need one additional vma to fix up the mappings ...
* and this is the last chance for an easy error exit.
*/
extra = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
if (!extra)
return -ENOMEM;
npp = (prev ? &prev->vm_next : &mm->mmap);
free = NULL;
for ( ; mpnt && mpnt->vm_start < addr+len; mpnt = *npp) {
*npp = mpnt->vm_next;
mpnt->vm_next = free;
free = mpnt;
if (mm->mmap_avl)
avl_remove(mpnt, &mm->mmap_avl);
}
/* Ok - we have the memory areas we should free on the 'free' list,
* so release them, and unmap the page range..
* If the one of the segments is only being partially unmapped,
* it will put new vm_area_struct(s) into the address space.
*/
while ((mpnt = free) != NULL) {
unsigned long st, end, size;
free = free->vm_next;
st = addr < mpnt->vm_start ? mpnt->vm_start : addr;
end = addr+len;
end = end > mpnt->vm_end ? mpnt->vm_end : end;
size = end - st;
if (mpnt->vm_ops && mpnt->vm_ops->unmap)
mpnt->vm_ops->unmap(mpnt, st, size);
remove_shared_vm_struct(mpnt);
mm->map_count--;
flush_cache_range(mm, st, end);
zap_page_range(mm, st, size);
flush_tlb_range(mm, st, end);
/*
* Fix the mapping, and free the old area if it wasn't reused.
*/
extra = unmap_fixup(mpnt, st, size, extra);
}
/* Release the extra vma struct if it wasn't used */
if (extra)
kmem_cache_free(vm_area_cachep, extra);
free_pgtables(mm, prev, addr, addr+len);
mm->mmap_cache = NULL; /* Kill the cache. */
return 0;
}
asmlinkage int sys_munmap(unsigned long addr, size_t len)
{
int ret;
down(¤t->mm->mmap_sem);
lock_kernel();
ret = do_munmap(addr, len);
unlock_kernel();
up(¤t->mm->mmap_sem);
return ret;
}
/* Build the AVL tree corresponding to the VMA list. */
void build_mmap_avl(struct mm_struct * mm)
{
struct vm_area_struct * vma;
mm->mmap_avl = NULL;
for (vma = mm->mmap; vma; vma = vma->vm_next)
avl_insert(vma, &mm->mmap_avl);
}
/* Release all mmaps. */
void exit_mmap(struct mm_struct * mm)
{
struct vm_area_struct * mpnt;
mpnt = mm->mmap;
mm->mmap = mm->mmap_avl = mm->mmap_cache = NULL;
mm->rss = 0;
mm->total_vm = 0;
mm->locked_vm = 0;
while (mpnt) {
struct vm_area_struct * next = mpnt->vm_next;
unsigned long start = mpnt->vm_start;
unsigned long end = mpnt->vm_end;
unsigned long size = end - start;
if (mpnt->vm_ops) {
if (mpnt->vm_ops->unmap)
mpnt->vm_ops->unmap(mpnt, start, size);
if (mpnt->vm_ops->close)
mpnt->vm_ops->close(mpnt);
}
mm->map_count--;
remove_shared_vm_struct(mpnt);
zap_page_range(mm, start, size);
if (mpnt->vm_file)
fput(mpnt->vm_file);
kmem_cache_free(vm_area_cachep, mpnt);
mpnt = next;
}
/* This is just debugging */
if (mm->map_count)
printk("exit_mmap: map count is %d\n", mm->map_count);
clear_page_tables(mm, 0, USER_PTRS_PER_PGD);
}
/* Insert vm structure into process list sorted by address
* and into the inode's i_mmap ring.
*/
void insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vmp)
{
struct vm_area_struct **pprev;
struct file * file;
if (!mm->mmap_avl) {
pprev = &mm->mmap;
while (*pprev && (*pprev)->vm_start <= vmp->vm_start)
pprev = &(*pprev)->vm_next;
} else {
struct vm_area_struct *prev, *next;
avl_insert_neighbours(vmp, &mm->mmap_avl, &prev, &next);
pprev = (prev ? &prev->vm_next : &mm->mmap);
if (*pprev != next)
printk("insert_vm_struct: tree inconsistent with list\n");
}
vmp->vm_next = *pprev;
*pprev = vmp;
mm->map_count++;
if (mm->map_count >= AVL_MIN_MAP_COUNT && !mm->mmap_avl)
build_mmap_avl(mm);
file = vmp->vm_file;
if (file) {
struct inode * inode = file->f_dentry->d_inode;
if (vmp->vm_flags & VM_DENYWRITE)
inode->i_writecount--;
/* insert vmp into inode's share list */
if((vmp->vm_next_share = inode->i_mmap) != NULL)
inode->i_mmap->vm_pprev_share = &vmp->vm_next_share;
inode->i_mmap = vmp;
vmp->vm_pprev_share = &inode->i_mmap;
}
}
/* Merge the list of memory segments if possible.
* Redundant vm_area_structs are freed.
* This assumes that the list is ordered by address.
* We don't need to traverse the entire list, only those segments
* which intersect or are adjacent to a given interval.
*
* We must already hold the mm semaphore when we get here..
*/
void merge_segments (struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
{
struct vm_area_struct *prev, *mpnt, *next, *prev1;
mpnt = find_vma_prev(mm, start_addr, &prev1);
if (!mpnt)
return;
if (prev1) {
prev = prev1;
} else {
prev = mpnt;
mpnt = mpnt->vm_next;
}
/* prev and mpnt cycle through the list, as long as
* start_addr < mpnt->vm_end && prev->vm_start < end_addr
*/
for ( ; mpnt && prev->vm_start < end_addr ; prev = mpnt, mpnt = next) {
next = mpnt->vm_next;
/* To share, we must have the same file, operations.. */
if ((mpnt->vm_file != prev->vm_file)||
(mpnt->vm_pte != prev->vm_pte) ||
(mpnt->vm_ops != prev->vm_ops) ||
(mpnt->vm_flags != prev->vm_flags) ||
(prev->vm_end != mpnt->vm_start))
continue;
/*
* If we have a file or it's a shared memory area
* the offsets must be contiguous..
*/
if ((mpnt->vm_file != NULL) || (mpnt->vm_flags & VM_SHM)) {
unsigned long off = prev->vm_offset+prev->vm_end-prev->vm_start;
if (off != mpnt->vm_offset)
continue;
}
/* merge prev with mpnt and set up pointers so the new
* big segment can possibly merge with the next one.
* The old unused mpnt is freed.
*/
if (mm->mmap_avl)
avl_remove(mpnt, &mm->mmap_avl);
prev->vm_end = mpnt->vm_end;
prev->vm_next = mpnt->vm_next;
if (mpnt->vm_ops && mpnt->vm_ops->close) {
mpnt->vm_offset += mpnt->vm_end - mpnt->vm_start;
mpnt->vm_start = mpnt->vm_end;
mpnt->vm_ops->close(mpnt);
}
mm->map_count--;
remove_shared_vm_struct(mpnt);
if (mpnt->vm_file)
fput(mpnt->vm_file);
kmem_cache_free(vm_area_cachep, mpnt);
mpnt = prev;
}
mm->mmap_cache = NULL; /* Kill the cache. */
}
void __init vma_init(void)
{
vm_area_cachep = kmem_cache_create("vm_area_struct",
sizeof(struct vm_area_struct),
0, SLAB_HWCACHE_ALIGN,
NULL, NULL);
if(!vm_area_cachep)
panic("vma_init: Cannot alloc vm_area_struct cache.");
mm_cachep = kmem_cache_create("mm_struct",
sizeof(struct mm_struct),
0, SLAB_HWCACHE_ALIGN,
NULL, NULL);
if(!mm_cachep)
panic("vma_init: Cannot alloc mm_struct cache.");
}